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A B S T R A C T   

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), polyesters produced by bacterial fermentation of 
sugars and/or lipids, are potential bioplastic alternatives to petroleum-derived plastics. Lignocellulose is an 
abundant renewable source of sugars for bacterial fermentation. However, chemical or enzymatic release of the 
sugars requires a pretreatment step to dispel the rigid structure of the lignocellulose and enhance sugar access. 
Most pretreatments of lignocellulose involve high temperature and/or pressure, which increases processing and 
production costs and discourages commercialization. Here we demonstrate a chemical-biological pathway for 
mcl-PHAs production from rice straw and hemp hurd. We combined ambient alkaline pretreatment, enzymatic 
hydrolysis, and bacterial fermentation. The alkaline pretreatment reduced the particle size of pretreated solids 
and partially fractionated hemicellulose and lignin; these effects increased cellulose accessibility to enzymes and 
enabled a high sugar release (78–83% glucose yield) at a high solid loading (9 wt%). Therefore, we obtained 47 
wt% and 69 wt% mcl-PHAs (with respect to gram of dry cell weight) from pretreated rice straw and hemp hurd, 
respectively. These findings constitute an energy-efficient pretreatment process that can be extended to other 
sources of lignocellulose, such as woody biomass and dedicated bioenergy crops. Moreover, mcl-PHAs from 
lignocellulose provide revenue to the agricultural sector, mitigate global warming from fossil fuel processing, and 
potentially reduce plastic pollution.   

1. Introduction 

A global challenge in sustainability is the transition from a fossil fuel- 
based economy to a bioeconomy based on renewable resources such as 
lignocellulose. The creation of renewable lignocellulose-derived biode
gradable products provides economic, societal, and environmental 
benefits: (1) a reduced carbon footprint because of less reliance on fossil 
fuels as feedstock and energy, (2) an improved economy from adding 
revenue to the agricultural sector and decreasing import of fossil fuels, 
and (3) a biodegradable alternative for petroleum-derived plastics and 
lower plastic pollution that harms the environment and health (Isikgor 
and Becer, 2015; Pileidis and Titirici, 2016; Sheldon, 2011). 

Hemp hurd (Das et al., 2020; Tulaphol et al., 2019, 2021) and rice 

straw (Hossain et al., 2021; Satlewal et al., 2018) are potential renew
able lignocellulose feedstocks. The estimated global production of rice 
straw and hemp hurd in 2019 was 670 million tons/year (Nguyen Van 
et al., 2019) and ~0.7–1.3 million tons/year, (Robinson, 1996) 
respectively. Presently, these materials are considered as agricultural 
waste or they are used in only low-value applications, such as garden 
mulch, lightweight paperboard, and acoustical ceiling. Thus, there is a 
vast amount of unused lignocellulose that could be upcycled into fuels 
and biodegradables. 

To use lignocellulose, its sugars must be released efficiently for 
subsequent conversion into bioproducts. Because of the rigid chemical 
structure and low enzymatic accessibility of cellulose, a lignocellulose 
pretreatment step is unavoidable (Bhatia et al., 2020; Soltanian et al., 
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2020). Most current pretreatments of lignocellulose require high tem
perature and/or pressure to enhance the cellulose accessibility and 
release sugars (Balan et al., 2009). For example, dilute acid, (Ríos-
González et al., 2021; Saha et al., 2005; Sheng et al., 2021) liquid hot 
water, (Jimenez-Gutierrez et al., 2021; López González and Heiermann, 
2021; Pérez et al., 2008) ammonia fiber explosion/expansion (AFEX), 
(Bals et al., 2010; Zeng et al., 2021) sulfite (SPORL), (Zan et al., 2021; 
Zhu et al., 2009) and ionic liquid (Wang et al., 2017; Zhang et al., 2021) 
enable high sugar release from enzymatic hydrolysis, but all these 
lignocellulose pretreatments are conducted at the expense of high 
temperature (80–220 ◦C). High-temperature pretreatment has draw
backs: (1) high cost of energy, (Capolupo and Faraco, 2016; Yu et al., 
2009) (2) generation of greenhouse gases (CO2, CH4) and particulates 
from burning coal, petroleum, and natural gas (Armaroli and Balzani, 
2007; Centi and Perathoner, 2021; Fulkerson et al., 1990), and (3) 
degradation of sugars into fermentation inhibitors that require a 
detoxification step before fermentation. All of these attributes of high 
temperature pretreatment negatively impact the economic feasibility of 
using lignocellulose (Binod et al., 2012). 

Pretreatment of lignocellulose with alkaline agents, such as lime and 
ammonia, at low temperature (<100 ◦C) is a promising approach to 
improve cellulose accessibility (Heggset et al., 2016; Zhao et al., 2008) 
without the economic and environmental cost of burning fuel and 
without sugar degradation. The low-temperature operation of alkaline 
pretreatments retains sugars in the pretreated solids for subsequent 
enzymatic hydrolysis (Chen et al., 2013). Moreover, low-temperature is 
a less expensive condition in terms of processing and reactor materials 
(Galbe and Zacchi, 2012). 

Sugars released from lignocellulose can be metabolized naturally by 
bacterial fermentation to produce medium-chain-length poly
hydroxyalkanoates (mcl-PHAs) (Ashby et al., 2001). The mcl-PHAs are 
biodegradable polyesters that are potential alternatives to 
petroleum-derived polyethylene, polystyrene, and polyethylene tere
phthalate (Ashby et al., 2001; Chen, 2009). In addition, mcl-PHAs are 
highly biocompatible, which enables biomedical applications such as 
implants, sutures, scaffolds, and drug delivery carriers (Hazer et al., 
2012; Kim et al., 2005; Kurth et al., 2002; Rai et al., 2011). Among 
PHA-producing bacteria, Pseudomonas species produce mcl-PHAs as 
carbon reserves under growth-limiting conditions (i.e., 
nutrient-deficiency) in the presence of excess carbon (Chen, 2009). The 
mcl-PHAs yield from Pseudomonas species (P. putida W619, P. putida 
KT2440, and P. fluorescens 555) reached ~26–37 wt% (with respect to 
dry cell weight) from glucose as the substrate (Davis et al., 2013). 
Arreola-Vargas et al. (2021) used dilute acid pretreatment at 121 ◦C on 
corn stover prior to fermentation by P. putida into 0.25 g/L mcl-PHAs. 
Davis et al. (2013) compared hot water pretreatment at 120 ◦C and 
2% NaOH pretreatment at 120 ◦C on ryegrass, followed by P. putida 
fermentation into 0.2 g/L mcl-PHAs. Although the alkaline pretreatment 

at 120 ◦C was effective and the fermentation of the resulting sugar hy
drolysate yielded mcl-PHAs, the high-temperature pretreatment con
tributes to the overall production cost of mcl-PHAs. 

Here, we demonstrated the effectiveness of alkaline pretreatment of 
rice straw and hemp hurd at ambient temperature for production of mcl- 
PHAs (Scheme 1). The ambient alkaline pretreatment of rice straw and 
hemp hurd retained >88% glucan. Enzymatic hydrolysis of pretreated 
lignocellulose released >78% glucose yield. Then we assessed the 
compatibility of the resulting sugars for fermentation by P. putida into 
mcl-PHAs. Fermentation of resulting sugar hydrolysates by P. putida 
yielded 0.5–0.6 g mcl-PHAs/L. This alkaline pretreatment at ambient 
temperature/pressure to release sugars and compatibility with P. putida 
offers a simple yet energy-efficient approach for lignocellulose upcy
cling to mcl-PHAs for biorefineries. The knowledge gained will help in 
further optimizing pretreatment and fermentation conditions to maxi
mize yields of sugars and mcl-PHAs. 

2. Material and methods 

2.1. Materials 

Rice straw was provided by Industrial Technology Research Institute 
(Taiwan). Hemp hurd was the Mammoth hemp strain and donated by 
Green Remedy (Louisville, KY, USA). The rice straw and hemp hurd 
samples were dried overnight at 80 ◦C, knife-milled, and sieved to the 
size of ~2.0–2.8 mm (7–14 mesh). The milled samples were rod shaped 
with an average length of ~2–5 mm. Our rice straw samples contained 
30.3 wt% glucan, 15.6 wt% xylan, 0.1 wt% arabinan, 21.5 wt% Klason 
lignin, 2.1 wt% acid-soluble lignin, 13.2 wt% ash (~67 wt% SiO2 in ash) 
and 17.2 wt% others (extractives, proteins, and wax). The composition 
of the hemp hurd was 31.6 wt% glucan, 9.6 wt% xylan, 1.1 wt% ara
binan, 25.2 wt% Klason lignin, 3.1 wt% acid-soluble lignin, 4.9 wt% 
ash, 24.5 wt% others. Previous studies reported others from hemp hurd 
in the range of 8–26 wt% (Das et al., 2020; Stevulova et al., 2015). The 
amount of others in hemp hurd varied based on cultivars (Das et al., 
2020) and growth conditions (Thomsen et al., 2005). Avicel PH101 was 
obtained from Sigma Aldrich (USA). Avicel was used as a model native 
cellulose, which contained both crystalline and amorphous fractions 
(Sathitsuksanoh et al., 2012). Regenerated amorphous cellulose (RAC) 
was synthesized as described elsewhere (Sathitsuksanoh et al., 2011a, 
2011c). RAC was used as a model amorphous cellulose (Hossain et al., 
2019). All chemicals and reagents were purchased from VWR (USA) and 
Sigma Aldrich (USA) as analytical grade and used as received unless 
otherwise noted. 

2.2. Alkaline pretreatment 

The alkaline pretreatment was conducted by dilute NaOH at ambient 

Scheme 1. Polyhydroxyalkanoates production from rice straw and hemp hurd.  
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temperature. The NaOH concentration, pretreatment time, and ligno
cellulose loading in the range of 1–10 wt% NaOH (in water, ρ 
~1.0–1.1 g/mL), 0.5–6.0 h, and 1–30 wt% lignocellulose loading (in 
dilute NaOH solution) were varied to determine the optimal pretreat
ment condition (see Supporting Information for detail). Briefly, ligno
cellulose samples were mixed with the dilute alkaline solution to the 
desired lignocellulose loading. For example, pretreatment at 10 wt% 
lignocellulose loading was conducted by adding ~1.0 g rice straw with 
9.0 g of the dilute NaOH solution. Then, the mixture was stirred by a 
magnetic stir bar at 600 rpm at ambient temperature at various pre
treatment durations. After pretreatment, the pretreated solid was sepa
rated by vacuum filtration using Whatman filter paper No.1. The 
pretreated solid was left on the filter paper and washed by DI water 
(~100 mL) until the pH of filtrate dropped to ~6.5–7.0. The resulting 
samples were separated into two parts: (1) the first part was freeze-dried 
for compositional analysis and structural characterization, and (2) the 
second part was stored at 4 ◦C and used for enzymatic hydrolysis and 
fermentation. Solid recovery, glucan retention, xylan removal, and 
lignin removal were calculated by Eqs. 1–4: 

Solid recovery (wt%) = ​
[

solidbefore-solidafter

solidbefore

]

× 100 (1)  

Glucan retention (wt%) =

[
glucanbefore - glucanafter

glucanbefore

]

× 100 (2)  

Xylan removal (wt%) = ​

[
xylanbefore- xylanafter

xylanbefore

]

​ × ​ 100 (3)  

Lignin removal (wt%) = ​

[
ligninbefore- ligninafter

ligninbefore

]

​ × ​ 100 (4) 

where solidbefore, glucanbefore, xylanbefore, and ligninbefore represent 
the mass of solid, glucan, xylan, and lignin before pretreatment. Solid
after, glucanafter, xylanafter, and ligninafter indicate the mass of solid, 
glucan, xylan, and lignin after pretreatment. 

The 10 wt% solid loading, 2.5 wt% NaOH, and 6 h was found as the 
optimal pretreatment condition as shown in high glucan digestibility 
(Fig. S1–S3, see Supporting Information for detail). Therefore, this pre
treatment condition was applied to hemp hurd and used to construct the 
mass balance. 

2.3. Enzymatic hydrolysis 

Enzymatic hydrolysis was conducted in 50 mM phosphate buffer, pH 
4.5 (6.80 g of potassium dihydrogen phosphate in 1 L water with a solid 
loading of 30 g glucan/L (70 g biomass/L) in 50 mL centrifuge tubes. 
The 30 g glucan/L solid loading was selected for a high glucose con
centration to target a high titer of mcl-PHAs from subsequent fermen
tation. A rotary oven (Hybaid Micro-4, Hybaid limited, United Kingdom) 
was used to control the hydrolysis temperature. Stir bars were custom- 
made using a quartz coated steel rod (5 mm inner diameter x 50 mm 
length) to ensure uniform mixing of the solid slurry and enzymes. Hy
drolysis experiments were performed in a rotary shaker at 50 ◦C at 
250 rpm. The enzyme loading was 30 mg protein/g glucan, unless 
otherwise noted. The Novozyme® cellulase (Ctec 2, protein concentra
tion: 188 mg protein/mL, 0.74 FPU/mg protein) to hemicellulase (Htec 
2, protein concentration: 190 mg protein/mL) ratio of 9/1 by volume 
was used or otherwise described. The enzyme ratio was found to be 
optimal to release sugars (Liu et al., 2018; Yaegashi et al., 2017). The 
protein concentration and cellulase activity (filter paper unit, FPU) of 
the enzymes were measured by the bicinchoninic acid (BCA) assay using 
BSA as protein standard and the filter paper assay as described else
where (Adney and Baker, 2008; Socha et al., 2014). The protein con
centrations and cellulase activity values agreed with previous studies 

(Alvira et al., 2011; Cannella et al., 2012; Zhao et al., 2015). All ex
periments were performed in triplicate, and data represented the mean 
with the standard deviation <9%. Enzymatic glucose and xylose yields 
were calculated by Eqs. (6-7): 

Enzymatic glucose yield (%) =
glucose released by enzymes (g)

glucose equivalent in pretreated solid (g)
× 100

(6)  

Enzymatic xylose yield (%) =
xylose released by enzymes (g)

xylose equivalent in the pretreated solid (g)
× 100

(7)  

2.4. Fermentation of sugar hydrolysates from pretreated biomass 

2.4.1. Bacterial strain, media, and cultivation 
Pseudomonas putida KT2440 (ATCC 47054) was used in this study. 

P. putida KT2440 catabolizes glucose from the native, cyclically- 
operating Entner-Doudoroff (ED) pathway (Sánchez-Pascuala et al., 
2019) to produce medium-chain-length polyhydroxyalkanoates 
(mcl-PHAs) (Scheme S1, Supporting Information). P. putida is a 
nonpathogenic, generally-regarded-as-safe, gram-negative soil bacte
rium that thrives in contaminated industrial pollutant sites. Therefore, 
P. putida is tolerant to inhibitors and was selected for this study (Dong 
et al., 2019; Horlamus et al., 2019). P. putida KT2440 was grown at 30 ◦C 
in minimal medium: NH4Cl 0.1 g/L (as a nitrogen source), KH2PO4 
1.5 g/L, Na2HPO4 3.54 g/L, MgSO4.7 H2O 0.2 g/L, CaCl2.2 H2O 
0.01 g/L, ammonium ferric citrate 0.06 g/L, and trace elements (H3BO3 
0.3 mg/L, CoCl2.6 H2O 0.2 mg/L, ZnSO4.7 H2O 0.1 mg/L, MnCl2.4 H2O 
0.03 mg/L, NaMoO4.2 H2O 0.03 mg/L, NiCl2.6 H2O 0.02 mg/L, 
CuSO4.5 H2O 0.01 mg/L) (Ouyang et al., 2007; Rocha et al., 2008). The 
limited amount of nitrogen in the minimal medium was intended to 
trigger the accumulation of mcl-PHAs. For carbon sources, cultures were 
supplemented with pure glucose (25 g/L as control) and sugar hydro
lysates from pretreated biomass. The sugar hydrolysates were diluted to 
25–30 g glucose/L prior to fermentation to activate the production and 
accumulation of mcl-PHAs, unless otherwise noted. 

A single colony of P. putida KT2440 was first grown at 30 ◦C in a 
minimal medium for ~12 h, as the seed culture. The seed culture (5% v/ 
v) was then inoculated into tubes with 15 mL minimal medium for PHA 
production. Samples were taken periodically for optical density (OD) 
and sugar analysis. After 72 h, cell pellets were collected by centrifu
gation at 6000 rpm for 15 min, resuspended in 1 mL DI water, and 
centrifuged again at 10,000 rpm for 1 min to remove liquid. Cell pellets 
were freeze-dried for cell dry weight (DCW) and PHA analysis. 

2.4.2. Extraction and quantification of medium-chain-length 
polyhydroxyalkanoates 

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were 
extracted and quantified according to Brandl et al. (1988) One milliliter 
of chloroform was added to 5–20 mg of lyophilized cells, followed by the 
addition of 0.85 mL methanol and 0.15 mL concentrated sulfuric acid. 
The mixture was heated for 2.5 h at 100 ◦C. The samples were first 
cooled to ambient temperature, then placed on ice following addition of 
~0.5 mL of water. The resulting slurry was centrifuged at 2000 ×g for 
5 min, which produced a biphasic solution with chloroform on the 
bottom and methanol/water on top. The organic phase was removed, 
transferred to a new tube, and diluted to an organic phase/chloroform 
ratio of 1/10 or 1/20 (v/v, depending on the amount of collected cells). 
Samples were filtered through a 0.2-μm polyvinylidene difluoride 
(PVDF) syringe filter before analysis by Shimadzu QP 2020 Plus Gas 
chromatography (GC) equipped with mass spectrometry (MS). About 
1 μL of sample was separated by GC/MS, which was equipped with a 
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DB-WAX column (30-m length, 0.32-mm inner diameter, 0.25-μm film 
thickness; Agilent, USA). The GC oven temperature was programmed to 
hold at 80 ◦C for 5 min before increasing to 170 ◦C at 20 ◦C/min. The 
temperature of the injector was set to 250 ◦C. Ultra-high purity helium 
was used as the carrier gas at 5 mL/min. The MS ion source temperature 
was set to 200 ◦C with an interface temperature of 250 ◦C and scan from 
50 to 150 m/z. External standards, 3-hydroxybutyrate methyl ester, 
3-hydroxyhexanoate methyl ester, 3-hydroxydecanoate methyl ester, 
and 3-hydroxydodecanoate methyl ester, were used to confirm the 
presence of monomers and quantify their amounts. The yield of 
mcl-PHAs was calculated based on the glucose content in pretreated 
lignocellulose-derived hydrolysates. 

2.5. Compositional analysis of biomass 

The compositions of untreated and pretreated lignocellulose samples 
were determined by National Renewable Energy Laboratory analytical 
procedures (Sluiter et al., 2012). All sugar concentrations in the 
acid-digested solutions were analyzed by Agilent 1100 
High-performance liquid chromatography (HPLC) equipped with a 
refractive index detector (RID) and a diode array detector (DAD). The 
Aminex HPX-87H column (300 ×7.8 mm, Bio-Rad®, Hercules, CA, 
USA) was used to separate sugars at 60 ◦C with 0.6 mL/min of 
4 mM H2SO4 as a mobile phase. The concentrations of sugars were 
determined by the RID signals’ peak area (HMF and furfural were 
determined by DAD signals at 280 nm). All sugars were calibrated 
against certified standards (Absolute Standards Inc., Hamden, CT, USA). 

Based on the mass flow of solid and liquid streams from pretreatment 
and enzymatic hydrolysis, the mass balance based on 100 g of dry 
biomass was constructed. The solid streams were presented in the form 
of solid sugar polymers (glucan, xylan, arabinan, lignin). The liquid 
streams were presented in the form of sugar monomers (glucose, xylose, 
and arabinose). 

2.6. Characterization of pretreated rice straw and hemp hurd 

To determine the physiochemical characteristics of lignocellulose 
after alkaline pretreatment, the pretreated solids were characterized by 
scanning electron microscopy (SEM), X-ray diffraction (XRD), and 
Fourier-transform infrared spectroscopy (FTIR). Untreated lignocellu
lose samples were used as a control. 

2.6.1. Scanning electron microscopy (SEM) 
SEM was performed on pretreated solids to determine the changes in 

morphology. The TESCAN Vega3 SEM (Warrendale, PA, USA) with an 
energy dispersive X-ray spectrometry (EDS) detector was used. Before 
performing SEM, pretreated solids were sputter-coated by an SPI-Mod
ule™ Sputter Coater (West Chester, PA, USA) using a gold target for 90 s 
under Argon gas. 

2.6.2. X-ray diffraction (XRD) 
To determine the degree of crystallinity, X-ray diffraction was per

formed on pretreated samples using the Bruker D8 (Billerica, MA, USA) 
with CuKα radiation (λ = 0.15418 Å). The scanning rate was 0.5 s/step 
(0.02 step increment), from 10◦ to 45◦ unless otherwise noted. The 
change in the degree of crystallinity of biomass was expressed in terms 
of the crystallinity index (CrI). The CrI value was calculated based on the 
Segal method (Segal et al., 1959) using the relationship between the 
height of the crystalline peak corresponding to (002) lattice plane (I002) 
and the amorphous region (Iam), which was the minimum (~18◦) be
tween (110) and (002) lattice planes as shown in Eq. (8): 

CrI =
I(002) – Iam

I(002)
× 100 (8)  

2.6.3. Fourier-transform infrared (FTIR) spectroscopy 
The changes in the chemical structures of pretreated lignocellulose 

(bond strength between sugar monomers and lignin-carbohydrates) 
relative to untreated samples were characterized by the JASCO 4700 
FT-IR Spectrometer (Akron, OH, USA) equipped with Attenuated Total 
Reflection (ATR, Pike Technologies, Madison, WI, USA). The samples 
were scanned in the spectral range between 400 and 4000 cm-1 for 256 
scans at 4 cm-1 resolution. 

3. Results 

First, we pretreated rice straw and hemp hurd by alkaline pretreat
ment at ambient condition using 10 wt% solid loading, 2.5 wt% NaOH, 
and 6 h. Then we hydrolyzed the pretreated lignocellulose samples to 
release sugars and presented the resulting sugars to P. putida for pro
duction of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). 

3.1. Mass balance of the ambient alkaline pretreatment of rice straw and 
hemp hurd, followed by enzymatic hydrolysis 

The mass balance showed that alkaline-pretreated rice straw and 
hemp hurd solids retained ~88–96 wt% glucan, 56–87 wt% xylan, and 
61–80 wt% lignin (Fig. 1). These high retention results suggested that 
alkaline treatment retained biomass components in the solids. To assess 
the alkaline treatment efficiency under the pre-determined optimal 
condition, we hydrolyzed the pretreated rice straw and hemp hurd with 
enzymes at a high loading of pretreated solids (~90 g pretreated solid/ 
L). 

To evaluate the efficiency of alkaline pretreatment, we performed 
the enzymatic hydrolysis using 30 g glucan/L, three times higher solid 
loading than that of our control. At this solid loading, initially, the 
pretreated lignocellulose samples acted like sponges and formed a 
viscous slurry for 24 h. Afterward, the slurry was thinner. Enzymatic 
hydrolysis of pretreated solids resulted in 78% glucose and 90% xylose 
yields from pretreated rice straw and 83% glucose and 83% xylose yields 
from pretreated hemp hurd after 72 h. As a control, we performed the 
enzymatic hydrolysis of untreated rice straw and hemp hurd samples at 
10 g glucan/L and 30 mg protein/g glucan. We obtained <15 wt% 
glucose yield after 72 h enzymatic hydrolysis of untreated biomass with 
10 g glucan/ L loading (~9 wt% rice straw and hemp hurd), which 
suggested resistance to enzymatic hydrolysis of untreated lignocellulose. 
The high enzymatic hydrolysis yields of sugars from pretreated ligno
cellulose suggested that the alkaline treatment at ambient condition 
facilitated the glucose and xylose release from rice straw and hemp hurd. 

Lignin acts as a glue to bind cellulose and hemicellulose together in 
the plant cell wall. Hence, many researchers developed pretreatment 
processes to remove lignin for enhanced cellulose accessibility to en
zymes and sugar release (Hossain et al., 2021; Lyu et al., 2021; Tian 
et al., 2020; Wang et al., 2021). On the basis of our mass balance, we 
obtained >78% enzymatic hydrolysis glucose yield from biomass while 
retaining >88 wt% glucan and 86 wt% xylan with 20–39 wt% lignin 
removal after alkaline pretreatment (Table S1). We postulated that the 
high enzymatic sugar yield by alkaline pretreatment at ambient tem
perature was a result of (1) moderate lignin removal (20–39 wt%), and 
(2) modified the chemical structure of lignin. Previous studies by Marcia 
(2009), Reinoso et al. (2018), and Yuan et al. (2021) demonstrated that 
a high content of para-coumaric acid (pCA) inhibited enzymatic hy
drolysis. Therefore, the lignin removal by alkaline pretreatment at 
ambient temperature potentially removed pCA and/or modified lignin’s 
chemical structure. As a result, the enzymes did not bind on the lignin to 
a great extent and resulted in more available enzymes for hydrolysis of 
cellulose and hemicellulose, thereby increasing enzymatic sugar release. 
Future studies will study the effect of ambient alkaline pretreatment on 
removing lignin and ferulic acid/pCA and their correlation with enzy
matic hydrolysis yield. 
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3.2. Characterization of pretreated rice straw and hemp hurd 

To identify the chemical structure responsible for the high enzymatic 

sugar yields from pretreated biomass at a high glucan loading, we 
characterized pretreated biomass by XRD and FTIR. As a control, XRD 
spectra of untreated biomass showed two broad crystalline bands of 

Fig. 1. Mass balance of sugar release from alkaline pretreatment of rice straw and hemp hurd followed by enzymatic hydrolysis: Pretreatment condition: ambient 
temperature and pressure (~25 ◦C and 1 atm), 10 wt% solid loading, 2.5 wt% NaOH in water for 6 h. Enzymatic hydrolysis condition: 30 g glucan/L (~92 g pre
treated rice straw/L and 89 g pretreated hemp hurd/L), pH 4.8 phosphate buffer (final pH), 30 mg proteins/g glucan. The reported lignin was Klason lignin. 

Fig. 2. XRD and FTIR spectra of rice straw and hemp hurd before and after alkaline pretreatment. CrI indicates the crystallinity index.  

Fig. 3. XRD and FTIR spectra of Avicel before and after alkaline pretreatment. CrI indicates the crystallinity index. RAC indicates regenerated amorphous cellulose as 
a proxy for amorphous cellulose. ND indicates not determined. 
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(101) and (002) crystal planes, similar to reported XRD spectra of rice 
straw (Kainthola et al., 2021; Li et al., 2012) and hemp hurd (Stevulova 
et al., 2014; Tyagi et al., 2021). After alkaline treatment, the XRD 
spectrum of treated biomass showed an increase in (002), which sug
gested an increase in the degree of crystallinity. We determined the 
crystallinity index of these samples based on their XRD spectra. The 
crystallinity index of untreated rice straw and hemp hurd was 37% and 
39%, respectively. After pretreatment, the crystallinity of pretreated 
solids significantly increased to 64% for pretreated rice straw and 69% 
for pretreated hemp hurd. An increase in crystallinity index after pre
treatment came from the removal of amorphous xylan and lignin 
(Gharpuray et al., 1983; Sathitsuksanoh et al., 2011b). 

Next, we used FTIR with pretreated biomass samples to determine 
the changes in chemical functionality of the C-C polymer backbone and 
surface functional groups. As a control, FTIR spectra of untreated 
biomass showed functional features of β-glycosidic linkage, C-O-C 
stretching in cellulose and hemicellulose, C-O stretching in guaiacyl 
ring, C-O stretching in syringyl ring, CH2 bending vibration from cel
lulose and lignin, aromatic ring stretching in lignin and ketone/alde
hyde C––O stretching at 895, 1160, 1260, 1330, 1430, 1507 and 
1730 cm-1, respectively, similar to previous reports (Lehto et al., 2018; 
Marchessault and Liang, 1962; Pal et al., 2016; Sills and Gossett, 2012). 

Because we expected that NaOH pretreatment would decrease the 
cellulose crystallinity, we pretreated Avicel with alkali at the same 
ambient condition we used for biomass (10 wt% solid loading, 2.5 wt% 
NaOH, 6 h). As a control, the XRD spectrum of Avicel showed five 
distinct cellulose crystal planes, (101), (101), (021), (002), and (040). 
The calculated CrI of Avicel was 79%, in agreement with reported values 
(Sathitsuksanoh et al., 2011b). After pretreatment, the CrI decreased to 
65%. The 17% decrease in CrI after pretreatment suggested that alkaline 
pretreatment decrystallized crystalline cellulose even at ambient tem
perature. To examine the effect of CrI reduction on glucose yield, we 
performed enzymatic hydrolysis of pretreated Avicel (Fig. S4). As a 
control, untreated Avicel yielded 40% glucose after 72 h. The pretreated 
Avicel yielded 59% glucose after 72 h. These results suggested that 
ambient alkaline pretreatment decrystallized crystalline cellulose and 
improved cellulose accessibility to cellulases, which led to increased 
glucose yield. Overall, these characterization results suggested that 
partial removals of hemicellulose and lignin and decrystallizing crys
talline cellulose by alkaline pretreatment increased the cellulose acces
sibility to enzymes and facilitated the high sugar release. 

To investigate the change in morphology of the rice straw and hemp 
hurd induced by alkaline pretreatment, we used a microscope and SEM. 
As a control, untreated rice straw and hemp hurd were rod shaped with 
an average length of ~2–5 mm (Fig. 4A1–2 and C1–2). In addition, they 
had a microfibrous structure (Fig. 4A3 and C3). Alkaline pretreatment 
disrupted the fibrous bundles as evidenced by a smaller size of < 1 mm 
(Fig. 4B1–2 and D1–2) and frayed and loose fibers at the end (Fig. 4B3 
and D3). One reason for loosened and smaller fibers of pretreated rice 
straw was the 39% lignin removal by alkaline pretreatment (Table S1). 
Similarly, we observed the loose fibrous structure and smaller particles 
after alkaline pretreatment of hemp hurd. However, the frayed hemp 
hurd fibers were larger than the fibers after pretreatment of rice straw. 
Lignin glues the cellulose microfibrils together. Once the lignin was 
removed, we partially de-glued the lignocellulose structure and exposed 
the cellulose microfibrils to attack by alkali. Thus, we postulated that the 
pretreated hemp hurd samples had larger fiber sizes compared with rice 
straw because alkaline pretreatment of hemp hurd removed only 20% 
lignin compared with 40% from pretreated rice straw. Overall, the 
alkaline pretreatment decreased particle size of pretreated fibers and 
removed lignin and hemicellulose, which enhanced cellulose accessi
bility to enzymes and enabled a high enzymatic sugar yield (Fig. 1). 

3.3. Fermentation of enzymatically derived sugars into medium-chain- 
length polyhydroxyalkanoates 

To assess the feasibility of using biomass-derived sugars, we pre
sented the sugar hydrolysates of pretreated rice straw and hemp hurd to 
P. putida KT2440. We monitored glucose consumption and optical 
density during fermentation. Nitrogen is a key element in cell growth. 
Without sufficient nitrogen, cells cannot produce amino acids and grow. 
We used a minimal medium with a limited nitrogen source to enable 
initial cell growth (TCA cycle, Scheme S1) and trigger mcl-PHA accu
mulation as a carbon source storage during the nitrogen-deficient phase 
(fatty acid de novo synthesis). As a control, we presented P. putida 
KT2440 with a pure glucose solution. We observed a fast glucose con
sumption and progressively increased optical density (Fig. 5A) indica
tive of cell growth. P. putida KT2440 grew well in sugar hydrolysates 
(glucose and xylose) from both rice straw and hemp hurd. The glucose 
consumption profiles were similar to that of pure glucose (Figs. 5B and 
C). The optical density for cell growth in the sugar hydrolysates was 
slightly lower than that in pure glucose after 72 h at a similar glucose 

Fig. 4. Morphology of rice straw and hemp hurd before and after alkaline pretreatment. Images 1,2, and 3 were obtained by digital camera, microscope, and 
scanning electron microscope, respectively. 
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concentration; the lower optical density suggested that pretreated 
lignocellulose-derived hydrolysates contained inhibitors of cell growth, 
such as extractives, pectin, oligosaccharides, and soluble phenolics from 
lignin (Arreola-Vargas et al., 2021; Guarnieri et al., 2017; Horlamus 
et al., 2019; Liu et al., 2019). 

After 72 h fermentation, we harvested the cells, measured the yield 
of the dry cell weight (DCW), and determined mcl-PHA yield (Fig. 6). As 
a control, the DCW from growth in pure glucose was 1.67 g/L. The 
DCWs from both hydrolysates were ~0.89–1.00 g/L, lower than that 
from pure glucose. Nevertheless, cells grown in biomass-derived sugar 
hydrolysates accumulated 0.47 g mcl-PHAs/g DCW (0.47 g/L) from 
pretreated rice straw and 0.69 g mcl-PHAs/g DCW (0.61 g/L) from 
pretreated hemp hurd, more mcl-PHAs than cells grown on pure glucose 
(0.36 g mcl-PHAs/g DCW). P. putida KT2440 consumed glucose and 
xylose in hydrolysate for the cell growth. Only glucose involved with 
mcl-PHAs accumulation. When considering the mcl-PHAs yield per 
gram of glucose, the glucose control had 0.03 g mcl-PHAs/g glucose. We 
obtained 0.022–0.024 g mcl-PHAs/g glucose from pretreated rice straw 
and hemp hurd hydrolysates, respectively, which corroborated the trend 
of DCW. 

When considered mcl-PHA yield per DCW, a glucose control pro
vided 0.36 g mcl-PHAs/g DCW. We obtained 0.47 and 0.69 g mcl-PHAs/ 
g DCW from hydrolysates of pretreated rice straw and hemp hurd, 
respectively. As suggested earlier, the lower DCW from pretreated 
biomass-derived sugar hydrolysates compared with that of pure glucose 
at similar glucose concentrations was likely due to inhibitors in the 
biomass-derived sugar hydrolysates. Thus, cells did not grow as well as 
they grew in pure glucose. In case of physiological stress, such as 
shortage of nitrogen and/or presence of inhibitors, P. putida repressed 
cell growth and enhanced accumulation of mcl-PHAs as shown by the 

greater yield of mcl-PHAs per DCW from pretreated biomass-derived 
sugar hydrolysates compared with the yield from growth in pure 
glucose. We postulated that the lower yield of mcl-PHAs from the hy
drolysate of pretreated hemp hurd compared with that from pretreated 
rice straw was due to the higher concentration of inhibitors that trig
gered the accumulation of mcl-PHAs (Liu et al., 2019). 

The mcl-PHAs resulting from pure glucose growth contained four 
monomers, 3-hydroxy-hexanoate (C6), 3-hydroxy-octanoate (C8), and 3- 
hydroxy-decanoate (C10), and 3-hydroxy-dodecanoate (C12) with C10 
being the dominant monomer (74.5 wt%) (Fig. S4). The mcl-PHAs ob
tained from pretreated biomass-derived sugar hydrolysates also had four 
monomers. However, the C12 monomers were more prevalent (15–20 wt 
%) compared with pure glucose growth (1.9 wt%). These results sug
gested that (1) P. putida produced mcl-PHAs under stress (presence of 
toxins and/or inhibitors, e.g. extractives, pectin, and oligosaccharides 
(Guarnieri et al., 2017; Horlamus et al., 2019), (2) the compositions of 
sugar hydrolysates controlled the composition of mcl-PHAs, and (3) 
biomass-derived sugars enabled the formation of high carbon number 
monomers that have enhanced mcl-PHAs properties (e.g., ductility and 
malleability) (Gopi et al., 2018). 

4. Discussion 

Efficient sugar release from lignocellulose under a mild pretreatment 
condition is a major challenge in creating profitable biorefineries and 
facilitating bioeconomy (Den et al., 2018; Islam et al., 2020; Lynd et al., 
1999; Seidl and Goulart, 2016; Wyman, 1999; Yang et al., 2018; Zheng 
et al., 2009). We demonstrated a chemical-biological upcycling strategy 
for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) from rice 
straw and hemp hurd. We combined alkaline pretreatment at ambient 

Fig. 5. Growth curves and glucose consumption of P. putida KT2440 in different sugar sources in 25 g/L glucose as a control (A), enzyme hydrolysates of pretreated 
rice straw (B) and pretreated hemp hurd (C) at ~25–30 g glucose/L). 

Fig. 6. Yields and compositions of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) from different sugar sources. The mcl-PHA yield was calculated from 
mcl-PHA weight percentage in dry cell weight. See Fig. S4 for GC chromatogram and MS trace. 
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conditions, enzyme hydrolysis, and bacterial fermentation. The ambient 
alkaline pretreatment enabled enzymatic sugar release of 78–90% at a 
9 wt% solid loading (~89–92 g pretreated biomass/L). The high sugar 
yield at a high solid loading and low-temperature operation minimized 
cost by eliminating the necessity of concentrating and detoxifying the 
sugars for downstream conversion. The resulting glucose was a direct 
precursor for mcl-PHAs production. 

Our most significant finding was the high sugar retention in the 
pretreated solids and sugar release by enzymes at a high solid loading 
from alkaline pretreatment at ambient conditions. Pretreatment at 
ambient temperature and pressure retained xylan and glucan in the 
pretreated solid, which eliminated the need for sugar recovery from a 
dilute alkaline solution for further upgrading. In addition, the ambient 
alkaline pretreatment partially removed hemicellulose (~15 wt%) and 
lignin (20–39 wt%) and reduced particle size, thereby increasing cel
lulose accessibility to enzymes and enabling a high 78–90% sugar yield 
from rice straw and hemp hurd at high solid loading (90 g pretreated 
solid/L). 

Table S2 shows selected alkaline pretreatment processes for ligno
cellulose. High-temperature alkaline pretreatment has been used to 
fractionate labile xylan into the dilute alkaline solution, (Molaverdi 
et al., 2021; Shi et al., 2021; Zhao et al., 2008) a procedure that requires 
a separation and concentration step to recover soluble xylan oligomers 
and xylose. Sodium hydroxide, (Chen et al., 2013; Jung et al., 2020) 
sodium carbonate, (Mirmohamadsadeghi et al., 2016) ammonium 
salts/agents, (Chundawat et al., 2020) and calcium hydroxide (lime) (Gu 
et al., 2015) are common alkali agents (catalysts) for alkaline pretreat
ment of lignocellulose. A high temperature (60–180 ◦C) and/or pressure 
(2–17 atm) is typically used to facilitate the dissolution of hemicellulose 
and/or lignin, enhance cellulose accessibility to enzymes, and maximize 
sugar release with short reaction times (Kim et al., 2016). For example, 
Chen et al., 2013 pretreated corn stover with NaOH at temperatures 
from 60◦ to 130 ◦C, solid loadings of 0.01–0.1 g NaOH/g dry biomass, 
for 30–120 min. Elevated temperature removed lignin and xylan, which 
enhanced the cellulose accessibility to enzymes, as evidenced by an 
increased enzymatic glucan digestibility. However, the high tempera
ture comes with the processing and environmental costs of burning fossil 
fuels. 

The high sugar yield at a high solid loading for enzymatic hydrolysis 
eliminated a sugar concentration step for subsequent fermentation 
because we obtained >78% sugar yield from 4 g biomass/g NaOH (al
kali strength), a yield greater than reported for many studies (Heggset 
et al., 2016; Kim and Han, 2012; Molaverdi et al., 2021). Alkali strength 
is an important indicator for the alkaline pretreatment efficiency. The 
high enzymatic hydrolysis yield at a high alkali strength indicates the 
high pretreatment efficiency. Although Jung et al. (2020) and Chen et al. 
(2013) achieved >81% glucose yield and >69% xylose yield from pre
treated corn stover and Miscanthus at >10 (w/w) alkali strength, they 
used temperatures greater than 121 ◦C. The heat supply to reach 120 ◦C 
typically comes from burning fossil fuels (natural gas), which generates 
CO2 and contributes to global warming. In addition, high temperature 
promotes formation of degradation products (i.e., furans), common in
hibitors of bacterial fermentation. As a result, the aforesaid studies 
required a detoxification step before fermentation. The detoxification 
step adds to the cost of the process. 

Another significant finding was the ability to use glucose resulting 
from pretreated lignocellulose-derived hydrolysates to produce mcl- 
PHAs. We pretreated lignocellulose at ambient conditions to minimize 
the formation of fermentation inhibitors. However, the lignocellulose- 
derived hydrolysates still showed some inhibition of cell growth, as 
evidenced by a lower dry cell weight (DCW) compared with that of pure 
glucose. Surprisingly, although we obtained lower DCWs from pre
treated lignocellulose-derived hydrolysates, their yields of mcl-PHAs 
were greater than the yield from pure glucose. 

These fermentation results suggested that lignocellulose-derived 
hydrolysates triggered the accumulation of mcl-PHAs. We postulated 

that P. putida responded to growth limitation (N-deficiency) (Wongsir
ichot et al., 2020, 2021) and physiological stress (hydrolysate derived 
inhibitors) (Lenz and Marchessault, 2005) by repressing the TCA cycle 
and triggering de novo fatty acid synthesis to produce mcl-PHAs (Fig. 7). 
As a result, we obtained 0.47–0.61 g mcl-PHAs/L from hydrolysates of 
pretreated rice straw and hemp hurd samples. 

Our findings provide a new perspective on lignocellulose upcycling 
to mcl-PHAs. Alkaline pretreatment of lignocellulose at ambient condi
tions for mcl-PHAs production had not been investigated (Table 1). 
Current upcycling processes for mcl-PHAs use harsh pretreatment con
ditions (~120 ◦C) to break lignocellulose recalcitrance and enhance 
enzymatic sugar yields. For example, Ahn et al. (2015, 2016) and Sindhu 
et al. (2013) produced poly-3-hydroxybutyrate (PHB) from dilute 
acid-pretreated rice straw at 121 ◦C. The PHB contained 4-hydroxybu
terate monomer (C4); the low carbon number monomers caused the 
PHB to be brittle because of a rigid structure and low elasticity 
(Mozejko-Ciesielska et al., 2019). The C6-C14 monomers of mcl-PHAs 
have desirable mechanical properties, e.g., elasticity and tensile 
strength, compared with PHB (Li et al., 2016; Mozejko-Ciesielska et al., 
2019). Our results demonstrated the effectiveness of the combined 
ambient alkaline pretreatment, enzyme hydrolysis, and fermentation for 
the production of mcl-PHAs from rice straw and hemp hurd. We expect 
our process to extend to other agricultural wastes and organics from 
municipal solid waste. 

Although lignocellulose upcycling to mcl-PHAs by an ambient 
alkaline pretreatment process is promising, the yield of mcl-PHAs needs 
to be improved for commercial feasibility. Future work will focus on 
identifying the inhibitors in hydrolysates, optimizing fermentation 
conditions (C/N ratio of the medium), controlling the monomer distri
bution of the mcl-PHAs (Arreola-Vargas et al., 2021; Ashby et al., 2001), 
and co-utilizing soluble lignin fractions during fermentation. In addi
tion, P. putida KT2440 contains two enzymes, PP_1444 and PP_1170, 
that convert xylose to xylonate, yet the bacterium cannot use xylose and 
xylonate for the production of mcl-PHAs. Thus, we will engineer 
P. putida KT2440 to shuffle xylose and/or xylonate to central meta
bolism to synthesize mcl-PHAs and maximize the utilization of sugars 
(Bator et al., 2020). In addition, we will develop the techno-economic 
analysis and life-cycle analysis models of our developed ambient alkali 
pretreatment and determine the threshold of pretreatment temperature, 
pretreatment time, (Mosier et al., 2005) and alkali strength in relation to 

Fig. 7. Mass balance of the overall conversion of rice straw and hemp hurd into 
medium-chain-length polyhydroxyalkanoates (mcl-PHAs). 
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the environmental and processing costs for profitable biorefinery. 

5. Conclusion 

We upcycled hemp hurd and rice straw to biodegradable medium- 
chain-length polyhydroxyalkanoates (mcl-PHAs), potential re
placements for petroleum-derived plastics. The ambient alkaline pre
treatment process retained sugars in the pretreated solids, enhanced 
cellulose accessibility to enzymes, and facilitated the sugar release by 
enzymes at high solid loading. Moreover, the resulting lignocellulose- 
derived sugars were favorable for bacterial fermentation to mcl-PHAs. 
Production costs are the key limitation to the mcl-PHAs commerciali
zation; our process has a relatively low cost. By showing the ability to 
produce high-value mcl-PHAs from lignocellulose, our study advances 
the bioconversion field. Moreover, the ambient alkaline pretreatment 
can be applied to other bacterial fermentations for other bioproducts, 
such as isoprenoids and methyl ketones for bio-jet and diesel fuels. 
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Table 1 
Selected production of polyhydroxyalkanoates from lignocellulose.  

Lignocellulose Pretreatment Microorganism PHA type PHAs titer (g/L) References 

Corn stover 1% H2SO4, 121 ◦C for 1 h Pseudomonas putida mcl-PHAs 0.25 (1.4a) (Arreola-Vargas et al., 2021) 
Perennial ryegrass 2% NaOH, 120 ◦C for 10 min Pseudomonas putida mcl-PHAs 0.2 (Davis et al., 2013) 

Hot water, 120 ◦C for 10 min 0.2 
Rice straw 6% H2SO4, 121 ◦C for 1 h Cupriavidus necator PHB 0.4 (Ahn et al., 2015) 

2% H2SO4, 121 ◦C for 1 h Cupriavidus necator P(HB-co-HV) 1.0 (Ahn et al., 2016) 
2% H2SO4, 121 ◦C for 1 h Bacillus firmus PHB 1.7 (Sindhu et al., 2013) 
2.5 wt% NaOH, ambient temperature, 6 h Pseudomonas putida mcl-PHAs 0.5 This study 

Hemp 2.5 wt% NaOH, ambient temperature, 6 h Pseudomonas putida mcl-PHAs 0.6 This study  

a Supplemented sugar hydrolysates with lignin stream from alkaline pretreatment of residual solids after enzymatic hydrolysis 
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